If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+x-450=0
a = 2; b = 1; c = -450;
Δ = b2-4ac
Δ = 12-4·2·(-450)
Δ = 3601
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{3601}}{2*2}=\frac{-1-\sqrt{3601}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{3601}}{2*2}=\frac{-1+\sqrt{3601}}{4} $
| 20+60x=30x | | -28=7n+21 | | ((2x+5)/3)+4=8 | | 6x+24=8x+10 | | 5÷12=x÷36 | | X+9+7x-5+3x=180 | | U+48=2u-9+u+17 | | 4y=2(y-5)-2 | | -3/4+2/5x=7/20x+-1/2 | | 12=n/3-8 | | 6x+2=x+11 | | X+x+x=19.5 | | 4(2t+5)=7t-6 | | -2(x-7)^2+5=-195 | | (3(8x-44))=180 | | -3/4+2/5=7/20x-1/2 | | 19=-r+7 | | 8z-43=2z+4z | | Y=x/9-8 | | 3x-16=64 | | 6-x-10=-3 | | 7z+21=6z-38+5z | | (x+4)/5-x+5=(x+3)/3-(x-2)/2 | | 18=4+2z | | 9p+-54=45 | | 2(x+1)+2x=4x+12 | | ((x+4)/5)-x+5=(x+3)/3-(x-2)/2 | | (3x+1)/7=(6x-1)/5 | | 18=4(w+4)-6w | | 5000=x+2x | | -10=6v=4(v-6) | | 12x-240=48 |